Value $\sum\limits_{r = 0}^{15} {\left( {{}^{15}{C_r}{}^{40}{C_{15}}{}^{20}{C_r} - {}^{35}{C_{15}}{}^{15}{C_r}{}^{25}{C_r}} \right)} $ is-
$0$
${{}^{40}{C_{15}} - {}^{35}{C_{15}}}$
${{}^{35}{C_{15}} - {}^{40}{C_{15}}}$
$^{40}C_{15}$
If $A$ denotes the sum of all the coefficients in the expansion of $\left(1-3 x+10 x^2\right)^n$ and $B$ denotes the sum of all the coefficients in the expansion of $\left(1+x^2\right)^n$, then :
The coefficient of $x ^{301}$ in $(1+x)^{500}+x(1+x)^{499}+x^2(1+x)^{498}+\ldots . .+x^{500}$ is:
$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $
$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ....$=
The sum of coefficients of integral power of $x$ in the binomial expansion ${\left( {1 - 2\sqrt x } \right)^{50}}$ is :